skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Breitenfeld, Laura B"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Quantification of Fe redox state and hydrogen content of amphibole provides information regarding the relationship between oxygen and water concentrations in terrestrial and planetary materials. Raman spectroscopy is a powerful technique due to its ability to characterize both %Fe3+and H2O from single crystal measurements, in addition to other chemical, mineralogical, and structural properties. Raman spectral measurements of amphibole minerals are used here to estimate %Fe3+(relative to total Fe) and H2O (wt%) contents using partial least squares (PLS) multivariate modeling. The accuracy of our model for prediction of %Fe3+is ± 8.11% (absolute) expressed as root‐mean‐square error (RMSE) of the entire data set, covering the range from 0 to 100% with anR2value of 0.85. The model for prediction of H2O has an internal RMSE of ± 0.09 wt% over the range from 0.1 to 1.9 wt% with anR2value of 0.95. Additional compositional model variables for predicting FeO, Fe2O3, MgO, CaO, Cr2O3, Al2O3, and TiO2have highR2values above 0.82; theR2value for SiO2is 0.63. Reliable models could not be achieved for MnO, Na2O, and K2O. The successful creation of our compositional models along with detailed analysis of the PLS model coefficients indicates that Raman spectroscopy can be used as a quantitative compositional tool in characterizing the amphibole mineral group. Quantifying amphibole compositions is useful for evaluating repositories of hydrogen, constraining the water budget of the terrestrial crust and interior, developing geothermobarometers and geohygrometers, and quantifying magma ascent rates. 
    more » « less
    Free, publicly-accessible full text available December 7, 2026